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Resonant phenomena in classical dynamics of three-body Coulomb systems

A. P. Itin*
Space Research Institute, Russian Academy of Sciences, Profsoyuznaya Street 84/32, 117997 Moscow, Russia
(Received 25 June 2002; published 5 February 2003

We consider dynamics of a planar three-body Coulomb system similar to a hydrogen molecleraioyn
light-heavy particles The system has three degrees of freedom. In the limit of infinitely heavy nuclei the
system is reduced to the famous two-center problem which is integrable. When masses of heavy particles are
finite, one degree of freedom in the Hamiltonian system corresponds to slow nuclei motion, while other two
degrees of freedom correspond to fast electron motion. The averaging method predicts that actions of “fast”
motions of the system with frozen nuclei are approximate integrals of the full systiabatic invarianjs
However, during slow evolution of the “heavy” subsystem certain resonance conditions can be satisfied. We
study the phenomena of capture into resonances and scattering on resonances which can lead to destruction of
adiabatic invariance in the system.
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[. INTRODUCTION because of resonant phenomena, which complicate the analy-
sis. We use a scheme of analysis of resonant phenomena in
A famous dynamical problem known as the “problem of Hamiltonian systems possessing slow and fast varidth&ls
three bodies1] has been investigated for more than 240this scheme is a Hamiltonian version of a more general
years[2] because of its importance in celestial mechanicsscheme[17,18 (see also Refd.19-21).
[3], as well as in one-electron molecular idds-7], doubly
excited states in atoni8], and exotic molecular systerf@].
A huge number of papers dealing with nonintegrable classi-
cal motion of three gravitating bodies has been published. Consider three particles with masses and charge<;
On the other hand, only in a limited number of papers has thenoving in a plane X,y). The Hamiltonian of the system is
classical three-body Coulom@mBC) problem been investi-
gated analyticall(see Refs[7—15] and references thergin 3
A systematic investigation of the classical dynamics of TBC H= 2
problem is desirable because, beside being of fundamental i=1
interest, it may provide useful information for modern semi-
classical methods dealing with quantum mechanics of atomi
and molecular systen8]. In both gravitational three-body
systems and TBC systems the masses of the particles in- ) 9112
volved usually differ by orders of magnitude. The main dif- =06 =)+ (yi—yp]™= 2
ference between TBC problems and gravitational three-body
problems is that in the latter interparticle interactions depentie assumem,,=M, mz=m, M>m, Z;,=1, Zz=—1.
on the particle masses, whereas in the former they depend ®efore applying canonical perturbation theory to the system
chargegwhich usually are of the same order of magnitude (1), let us perform some transformations. By means of
As a result, perturbative treatment of a TBC system such asimple canonical transformation with generating func-
a hydrogen molecular ion is quite different from that of i, W1=5x1(X1—X3)+5y1(y1—)’3)+5x2(x2—x3)+5y2(y2
gravitational systems in celestial mechanics. In the present ~ -~ 0T ]
paper, we consider dynamics of a planar TBC system similar Y3) * Px;Xs+ Py,ys the Hamiltonian is reduced from six to
to hydrogen molecular iofitwo heavy(massM) and one four degrees of freedori5]:
light (massm) charged particlgs We consider the problem
for different mass ratiognot restricting ourself to the hydro- ~2 T2 T2 T2 o= = =~
gen molecular ion In the limiting case of fixed nucldi.e., px1+ py1+ pX2+ Py, Px,Px, TPy Py, 1
M/m=x) the system becomes separafile classical me- H= 21 + m N \/ﬁ
chanics, separation of Hamilton-Jacobi equation for the two- X1tYy1
fixed center three-body problem has been known already to
Euler and Jacobhi Then the mass ratio is finite, the problem _ 1 n 1
is nonintegrable, but the presence of slow and fast motions in \fvz ~ \/~ ~ 5 o~ ~ 5
the system enables one to use averaging methods. However, X2tyz2  N(X1=X2)"+(y1~Y2)
the averaging technique in the system is not straightforward
where u is the reduced masg,=mM/(m+M). Then, we
change to variablesR, ,x,Py,y,Pr,R,Pg ,0) by means of
*Electronic address: alx_it@yahoo.com a generating function

II. HAMILTONIAN EQUATIONS OF MOTION

2 2
PxtPy\ z.z2, 7,2, Z,Z
( X y|)+ 1 2+ 2 3+ 1 3, (1)

2m M2 l23 M3

ﬁ/hererij are interparticle distances

()
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W,=P,,(3R cos® +x cos® —y sin®)
+}3y2(%Rsin®+xsin®+y cos0)
~Py, (3R C0OSO —x c0sO +y sin®)
~Py,(3RsINO®—xsiN® —y cosO).
New coordinates are determined by the following relations:

X2:

2Rcos—xcos®+ysin®,

Yo=—

2Rsin@—xsin@)—ycos@,

1
2Rcos—xcos®+ysin®,

X1=

Y11=

2Rsin@—xsin@)—ycos@.

(4)

The resulting HamiltoniarH (P, ,x,P,,y,Pr,R,Pg) does
not depend or®, therefore,Pg=const and we get the sys-
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62
4+ —

mR2

by costfv + cou
(P2+P2)——— 0.
costv — cogu

In order to regularize the Hamiltonian let us introduce a new
time variablet’ satisfyingdt/dt’ = (costfv—cogu)m/2 [22].
The resulting Hamiltonian igsomitting tildes

P2+ P2

v
R2

—mE|(cosh2 —cos )+

1 P2
2 (€}
4( PR+ =

2m Pr
— ——coshv +e—

= 2R(Pu sin2u— P, sinh 2v)

Pe - - € . 2
+6E(Pu sinh 2y +P, sin2u) + R(P,ﬁr P:)

X (2+cosh +cos )= Fy+ eF,+0(2)=0. (7)

Variablese Pk andR (whereR is still the internuclei dis-
tance are canonically conjugated

oH
IR’

L g
R— € - ﬁPR’ ( )

€

so that this pair of variables is “slow,” whereas other two

tem with three degrees of freedom. It is easy to calculate thaairs are “fast.” If one frozeR, Pr and neglect term®(e) in

Pg is equal to the total angular momentum Pg=L. Let
us introduce a small paramete+ ym/M and new momenta

Eq. (7), one will get the problem of two fixed Coulomb
centers(two-center problemwhich is integrable. Therefore,

PL=ePg (we are interested in motions where typical valuesthe Hamiltonian systen(7) can be investigated using the

of Py are high, so thaPr> €). Denote als®®y = ePg . Sub-
stituting P in the Hamiltonian, we get the Hamilto-
nian H(P,,x,P,,y,Pr,R,Pg) with canonically conjugated
variables € 'Pg,R), (Py,x), (Py.,y) which containsPg
as a parameter. The next step is to
variables P,,u,P,,v,Pg,R) by means of a generating
function  Ws(Py,Py,Pg,u,v,R)=(R/2)(Pycoshv cosu
—Pysinusinhv)—eflﬁPRJrEt, whereE is the value of the
Hamiltonian(3) (see also Refd.7,22)). New coordinates are
determined by the following relations:

R R _ -
X=— =coshv cosu, y= Esmhv sinu, R=R.

. ®)

The resulting Hamiltonian isomitting tildes and primes

L1
R

2 P2+ P2

J’_
mR2 costfv —cofu

2

(6)

4 coshv
R(coslfv — cogu)

€Pg P, sinh2 + P, sin2u

+
mR?  cosHv—cogu
€Pr Pysin2u—P, sinh 2
MR cosHfv —cogu

introduce

technigue developed in Refsl6,18 and employed recently
in Refs.[23-28§. So, consider first the Hamiltoniak, of the
system(7) with frozenPg,R and with termsO(e) omitted

2 2
_U+_u_(

2m
R R ——coshv, (9)

.7:0: R

cosh2 —cos )Eq—

whereE, = (m/4)(E— P&/m— P3/mR2—1/R). Hamiltonian
Fo in addition to conserved energy has a second constant of
motion )

Pa+ & cos =0,

P2— &, cosh2 —2mRcostw =—Q, (10)
where&, = R?E,,. The system is separated into two decou-
pled oscillators whose phase portraits are shown in Fig. 1.
Since the HamiltonianF, is integrable, one can define
action-angle variables,,¢,,l,,¢, in the domain of its
phase space filled up by two-dimensional invariant tori.

We define the action variables in the followiritpatu-
ral”) way. For a phase point in Fig(d moving in the os-
cillation domain of the phase portrajtinside” the separa-
trix) I, is the area encircled by its trajectofiye., the line of
constant&, and ()), divided by 2. For a phase point in
Fig. 4(@ moving in the domain of rotation,, is the area
between the two lines of consta#t;, () (one of which
passes through the pojrend linesu=0, u= 27, divided by
41 (so that we avoid a geometric jump in the action by a
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FIG. 1. Phase portraits of the subsystdii®. (a) (P, ,u) plane
(b) (P, ,v) plane.

factor of 2 at the separatyixin the same way the actidy) is
introduced. For a phase point in Figlbl moving in one of
the potential wellqinside the separatrixl, is the area en-
circled by its trajectory, divided by 2. For a phase point in
Fig. 1(b) moving around both of the two stable equilibria
(“outside” the separatrix |, is the area encircled by its tra-
jectory, divided by 4r. For simplicity actions of the system
can be written in the following form:

1
=5 3[; VQ — &g cosaidy,

Ly

I v

1
Eﬂﬁ V=—Q+&,coshd +2mRcoshvdo, (11)

where the symbol §” takes into account the geometric fac-

tor 2 in the different domains of the phase space as described

above. The transformatiorP(,,u,P, ,v)—(l,, ¢y, ., ¢,) is
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S= J V= Q+ &, cosh X+ 2mRcoshxdx
vo

(12

u
+ f VQ =& cos 2 dy,
Uo

where in the first part of right-hand side of EQ.2) Q) is
considered as a function of , whereas in the second part it
is considered as a function &f [see Eq.(11)]. Initial coor-
dinatesuy andv are functions of , andl, correspondingly;
one can define, as the root of the integrand of , andug
as eitherrr/2 or 3m/2 depending on the domain of motion in
Fig. 1(a). Frequencies of the system have the form

oMy 1
Qo9 Al
0
1 -1
=4 fﬁ dv ,
J—Q+ &, cosh 2 + 2mRcoshy
IHe 1 1 -
aly VQ = Egcos 2

Q)

Now, following Ref.[16], let us make in the system with
Hamiltonian(7) the canonical transformation of the variables

(Pu1u!Pv!U7PR!R)_>(IU1¢U!IUI¢UvavR) (13)
determined by the generating function
1 -

;PRR+S(uavIIU1lvaR1PR1E)1 (14)

which containg€ as a parameter. The canonically conjugated

pairs of new variables arel (,#,), (I,.4,), (¢ *Pgr,R).
Formulas for the transformation of the variables have the
form

5 S 3S

a::! a:_l a:ulv!

al, d

R=R+ s Pr=Pg+ s 15
=Rte=, Pr=Prtezm. (15

R

Hamiltonian(7) in the new variables has the forfh6]

H=Ho(ly,1,,Pr,RE)+€Hs(ly, 4,1, by, Pr,R,E)
+O(62),

canonical and can be performed using a generating function

S(u,v,ly,1,,R,Pgr,E) that containR,Pg,E as parameters.
In the new variables the Hamiltoniaf, transforms toH,
=Ho(ly,!,.Pr,R,E). The functionS has the form

0Fo IS dHy IS

=F+ —,
Ta=7 JPR IR JR gp,

(16)
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The variables K, ¢,,1,,¢, ,Pr,R) areO(e)- close to the

variables (,,¢,,!,,®,,Pr,R). Henceforth, the bars over
the new variables are omitted and the new Hamiltonian is

H=Ho(ly,l,,Pr.RE)+ eHy(ly, by, . by, Pr.RE)
+0(€?). (17)
The differential equations of the motion have the form

H,y

S )
I o e&¢a+0(e ),
. M
¢a:wa(IU1IUIPR1R1E)+E&| +O(E ), a=Uu,v,
| THe oM,
PR__G_ﬁR Bk +0(€%),
L oMy My,
R_eﬁ_PR+€ (9_F’R+O(6 ). (18

Averaging of the right-hand sides of E(L8) over ¢, and
discarding term®(€?) gives an averaged system
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Approximation (19) is called an adiabatic approximation
[16,18. Trajectories of the systerfi9) are called adiabatic
trajectories. In the adiabatic approximatin,= const. The
adiabatic approximation breaks down in a vicinity of reso-
nant surfaces which are defined by a resonance condition
kyo,tk,0,=0 (k,,k, are integersand near separatrices
where eitherw, or w, equals to zero. In the fullnonaver-
aged system variables$, are approximate adiabatic invari-
ants, i.e., they are well conserved in a large area of phase
spacefar from resonant surfaces and separatjicishough
resonant surfaces are dense in the phase space of our three-
dimensional Hamiltonian system, for smadl only finite
number of low-order resonances are importdhé order of

an resonance is the value lo¥ |k | +1k,|) [16]. If an adia-
batic trajectory crosses an resonant surface in the averaged
system, it cross the surface at the same point periodically in
time (because the averaged system is a one-dimensional
Hamiltonian system foPg,R and therefore is integrable
Note that in Eq(7) Pg= €L, so the terms containinge are
important only in case of very high (fast rotation. If L

~1, the perturbationF; is separated iny,v): the Hamil-
tonian(7) with frozenPg,R and with terms0(€?) omitted is
integrable. That enables one to introduce “improved” adia-
batic invariantsl (),1(!) as the actions of the Hamiltonian

ia=0, pR:_fﬁ_Ho, 26_‘9H0_ (19 Fo+ e(Pr/2R) (P, sin 2u—P, sinh 2) [see Eq.(7)]. Formu-
IR PR las for them have the form
|<1>:£fum”\/n<l>—5 |coszu+6—2 PZR2sir?2udu
! TJ umin ‘ 16" R '
1 (v 2
W= ™/ _o® € 2p2e:
= QW+ Egcosh 2 +2mReoshy + T=PRR sinff2vdv, (20)
Umin

where
€

P2+ &, cos u+ 5

PrRP, sin2u=0®),

€
P2— &, cosh 2 —2mRcoshy — > PrRP,sinh 20 = -0,
(21)

The variabled , [Eq. (11)], 1Y, andl ,(a=u,v) areO(e)-
close to each other. Variations ¢f") far from low-order

resonant surfaces are of order @f nevertheless, they are

ena either of variabless, ,1'2,1,, could be used, but the vari-
ables! ! are more convenient and in the figures below dy-
namics of I} is demonstratedwith indexes (1) being
omitted]. At the same time, in the analytical expressions in
the text below the variablels, are investigated, and bars in
the formulas are omitted.

IIl. DYNAMICS IN A VICINITY OF RESONANCES

Consider dynamics of the system in a resonance region

sufficiently smaller than those of, because the perturbation following Ref.[16]. Near a resonant surface of a given reso-

is partly included into the unperturbed Hamiltonian.

nance the systeif18) can be transformed into standard “per-

The phenomena of scattering on a resonance and captuerbed pendulumlike system” form. This transformation is
Eto a resonance being described below lead to changes @arried out in aO(\/E)- neighborhood of the resonant sur-
I, which scale agD(\e) and O(1) correspondingly. So face. For a given pair of resonance indexég,k,) there
that for numerical investigations of these resonant phenomexist integerd,,l, such thatk,l,—k,l,=1. Let us make a
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canonical transformation of the variables, (1, ,¢,,¢,)
—(K,J,vy,¢) using formulas

7:ku¢u+ku¢ur K:|UIU_|UIU7

=y, t1,0,, I=—k,l,+kil,. (22 P
VariablesPg,R remain unchanged under this transformation.

The transformation(22) produces slow {) and fast )

phases from initial phases,, ¢, in the vicinity of (k,,k,)-

resonance. Such transformations are often used in systems

with slow and fast variablegl8]. The new Hamiltonian has

the form

H=Ho(K,J,Pr,R) + eH1(K,J,v,1,Pr,R)+ O(€?). (@) Y
(23)
(We keep old notations for the Hamiltonian in the new vari-
ables) The new phase/=k,¢,+k,¢, is called a resonant
phase. In a resonant zone the resonant phasghanges
slowly andy changes rapidlyy~ /e, y~1. So that we can
perform the averaging of the Hamiltonian owgf16,18. To P
this end, we should perform in the resonant zone a canonical
transformation of variables
(KJ,7.4.Pr. R—(KJ 7. .Pr.R), (29
which is close to identity inK,J, v, ¢) by O(€) and close to
identity in (Pg,R) by O(€?) [16]. In the new variables the
Hamiltonian has the fornfbars over new variables are omit- (b) Y
ted)

FIG. 2. Typical phase portraits of the Hamiltonikg from Eq.
(28). From left to right:(a) The phase portraits have an oscillatory
domain[the inequality mir(af/dy)<—b<max/(df/dy) is satisfied.

(b) There is no such a domain on the phase portrait.

H=Ho(K,J,Pr,R)+eHy(K,J,7,Pr,R) + O(€?).
(25)

Here,??l is the average of{,|.—o over ¢ (or, equivalently,
the sum of the resonant harmonics in the Fourier series e
pansion forHy|.—q [16]). The differential equation fad has

described in Ref[16], we obtain that dynamics in the reso-
Hant region is determined by the Hamiltonian

now the form F=e 'A(Pg,R,J)+FoyP,7,Pr,R,J)+0(e),
71— 2
=0l (0 For=Fot0,(\e),
ThereforeJ is well conserved in the resonant zdiits varia- 1
tion during a timeO(1/e) in a resonant zone i®©(¢€)]. The Fo==0(Pg,R,J)P2+f(7y,Pr,R,J)+b(Pr,R,J)7,
resonant surface is defined now by the equatiéty/JK 2
=0. Let us assume that conditialH,/9K?+ 0 is fulfilled (28)

on this surface. Then, locally the equation of the resonant ) ,
surface can be represented in the fdfa(Pg,R,J). An  Whereb={a,A} ({-} means Poisson brgg/l;ﬁtsanonlcally
expansion ofH near the resonant surface yields] conjugated variables are P(y), (e “*Pr,R), and
(J,e Y2y (a new time#= \et’ was introduced Approxi-
1 mate equations of motions have the following fofi®]:
HZA(PR,R,J)+Eg(PR,R,J)[K—a(PR,R,J)]Z

e N A
+ef(,Pr,RI)+0,(|K—a|*+e[K—al) + O(€?). Pr="Veor R=7p2
2
@7 , dFy _dFy
Here, A,f,g are restrictions ofHg,H;,d*Hy/dK? to the Ty VTP
resonant surface. Index in O,(-) indicates functions that
do not depend ony. Performing a simple transformation J=const, (29
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f 3220

FIG. 3. Capture of a phase point into(2,1) resonance and
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1.07

J

1.06

1.05
0 t 320

FIG. 4. Dynamics of the adiabatic invariaft Parameters and
initial conditions are the same as in Fig. 3.

phase points of Eq29) cross a separatrix of the phase por-

trait of Fo, and change the regime of motion from a rotation

to an oscillation. This means capture into resonance. If area
of an oscillation region decreases along the resonant flow,
then phase points leave this oscillation region and leave the
resonant zone. This is escape from the resonance. We found
these phenomena in numerical investigations of the system
(7). The results are demonstrated in Fig. 3, where capture
into a (2,1 resonance and escape from the resonance are
shown. The same phenomenon was investigated recently in
Refs.[23,25,28. For a three-body Coulomb system similar

to a hydrogen molecular ion, the phenomenon of capture into
a resonance is numerically demonstrated and analytically ex-

escape from the resonance. The captured point moves along a reqaained. While moving in oscillating region the captured
nant curve in the phase space until it escapes from the resonangghase point has two adiabatic invariaft$] : J and “ac-

Parameters of the systemm=1, M=24000, Pgy=0.4,
E=—2.62. From top to bottom(@ Dynamics of the adiabatic in-
variantl, . (b) Dynamics of the frequencies ratlo= 0,/ w, .

where primes denote differentiating over new titheHence,
evolution of slow variable$,R is governed by a Hamil-
tonian system; the HamiltoniagleA (Pg,R,J) of this sys-

tion” variable p for the pendulumlike system in the oscillat-

0720 (5

Iu

tem depends on the paramefeiThis system determines the
flow on the resonant surface, which is called “a resonant
flow” [16]. Behavior ofP, y is governed by the Hamiltonian

Fo(P,7,Pg,R,J). This Hamiltonian depends on the param- %71
eterJ=const and on the slowly varying parametés,R.

[=)
w
=]

L )

Consider subsystem fd?,y in Eq. (29) with frozenPg,R.

We get a Hamiltonian system with one degree of freedom
which is called a pendulumlike system because the Hamil—r
tonianF, resembles a Hamiltonian of a pendulum under the
action of a constant torquel6](for a pendulumF,=1gP?
—cosy+by). There are two basic types of the phase portraits
of the HamiltonianF,: with oscillation regions and without
such regions. If in Eq(28) miny{(df/dy)<—b<max/df/dy),
then there are stable and unstable stationary points on th
phase portrait. The separatrices of the unstable stationar 06

12

10|

points enclose the oscillation regions. If this inequality is not
satisfied, there are no oscillation regions. Typical phase POT | 95

60

traits are presented in Fig. 2.

Motion in oscillation regions correspond to captured into
a resonance motion of phase points. Motion outside suchJ
regions (motion in the rotation regioncorrespond to the

phase points that cross the resonant zone without being cap0 919

©

A o

tured. Now let us take into account slow change of the pa-
rametersPg,R along the resonant flow in syste(@9). Let

0 30 t oo

the area of an oscillation region grow along the resonant FIG. 5. A single jump of the adiabatic invariaht on a(1,1)

flow. Then additional space appears inside the oscillation rereson

ance. Parameters of the systemr=1, M=24000, Pg

gion. Due to conservation of phase volume in Hamiltonian=0.001, E=—2.786. From top to bottom(a) Dynamics of the
systems, this space will not be occupied by the phase pointgdiabatic invariant,. (b) Dynamics of the frequencies ratib
that were captured into resonance earlier. Therefore, somew,/w, . (c) Dynamics of the adiabatic invariadt
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073 (a) IUZZZ WW
Iu W (a)0'8' 0 f 3200
13
r
0.70 05
0 t 1300 (o) © t 5200
12 0.73
(b)
I
1.0 u W
0.8 (€)% Tsg00 t 12200
1.2
(@ "*Tos00 t 12200
04
0 g 1300 FIG. 7. Regular and diffusionlike behavior of approximate adia-

batic invariants. From top to bottonfa) Regular dynamics of the
FIG. 6. Jumps of the adiabatic invariaint. Parameters of the adiabatic invariantl,. Parameters of the systerm=1, M
system:m=1, M=24000, P;,=0.001, E=—2.786. From top to =2000, Pg=0.05, E=—2.84. Initial values of adiabatic invari-
bottom: (a) Dynamics of the adiabatic invariahg. (b) Dynamics  ants;1,=8.34x10 %, 1,=6.36x10 2. (b) Dynamics of the fre-
of the frequencies ratib' = w,/w, . quencies ratid'= w,/w, [parameters and initial conditions are the
same as irfa)]. (c) Diffusionlike dynamics of the adiabatic invariant
ing regionli.e., the area onK,y) plane encircled by a line |,. Parameters of the system=1, M =24000, P,=0.001, E
of constantF, passing through the phase point, divided by =—2.786. Initial values of adiabatic invariantg;=7.17x1071,
2. I,=1.44x10 . (d) Dynamics of the frequencies ratlo= v,/ w,
The goodness of conservation of the adiabatic invardant [parameters and initial conditions are the same &s)ih

is demonstrated in Fig. 4. The goodness of conservation of ; | h ) )
the “internal” adiabatic invarianp in a similar problem was nant surfaceenters a resonant zonét leaves the adiabatic
demonstrated numerically in R4R3]. curve and can be either captured into the resonance or pass

Phase points that cross the resonance without being CaH]rough the resonance region without capture. In the case of

tured undergo a jump of adiabatic invariafitof order /e capture ;he %hase p?;ntt gontlnues to ”;O(\j'? In thtﬁ vicinity of a
[16] and, therefore, jumps df, , (sincel,=k,K+1,J, I, resonant surface until it becomes ejected from the resonance.

—Kk,K+1,3, and the magnitude oFis well conserved during " ©" the captured phase point, variabfe®r evolve along a

passage through the resonandéis phenomenon is called a 'esonant flow trajectoryR(et), Pr(et)} so the ared of the

scattering on a resonanc&/e present corresponding results oscillating region slowly evolves a(R(et),Pr(et)). In the

of numerical investigations of the systd) in Fig. 5, where first-order approximatiop = const along the trajectory of the

a single jump of the adiabatic invariaht on a(1,1) reso- phase point in the oscillation region. At the time of capture

nance is shown, and Fig. 6, where several jumps are showinto the oscillating region 2p=S(R,Pr). The phase point

Although there are passages through other resonances in Figill be ejected from the oscillating region when

6, including(3,5 resonance, they are not visible in the figure S(R(et),Pg(€t)) is equal to 2rp again, so the times of cap-

(there are no distinguishable jumps of the adiabatic invariture and escape from the resonance are two nearby roots of

ants on the other resonange3he reason for this is fast the equationS(R(et),Pg(et))=2mp [16]. Along the cap-

decay of the resonant harmonics7f in Eq. (25 with in-  tured phase trajectories, adiabatic invaridntsnay change

creasing the order of a resonarisee Ref[16]). In the adia- by values of order 1.

batic approximation a value of the unperturbed frequencies In the case of passing through the resonant region without

ratio I'= w,/w, evolves periodically in time. In Fig. (6) capture the adiabatic invarianitg,|, of the phase point un-

small deviations from periodicity can be seen. dergo jumps~ e, and after passage through the resonant
Both capture into a resonance and scattering on a resgone the particle continues to move along other adiabatic

nance are probabilistic phenomena, and they are usual icurve.

systems with resonance crossingee Refs[16,18,25,28). Performing numerical investigations of the systéth we

For a phase point approaching the resonance the probabilityave observed phenomena of scattering on resonances for

to be captured is a value of order g€. So, a phase point in systems with particle mass ratio/M ranging from 102 to

(I4.1,,Pr,R) space moves in a following way: while it is 10"/, both in systems wit. =0 andL #0. So far we have

far from low-order resonant surfaceg,w,(l,,Pgr,R) observed the phenomena of capture into a resonance only in

+k,0,(l,,Pr,R)=0 and separatrices, it moves in a vicin- systems with_+#0.

ity of an adiabatic curve, ,=const. When it nears a reso-  In the present paper, we investigate passages of phase
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points of our system through resonances, but not separaf intersection of the adiabatic trajectoRwith the resonant
trices. Separatrix crossings may also lead to breakdown cfurface;y, denote the value of at the point of intersection
adiabatic invariancg27]. It is known that in systems with of the exact trajectory with the resonant surfahg;is the
two degrees of freedom behavior of the breakdown of adiavalue of the HamiltoniarF, at the resonant surfadé.e.,
baticity near separatrices is different from that near resoh, =f(y, ,Pg ,R, ,J)+by,]; the sign in+« is given by
nances(see Refs[19,20,27,28. For multidimensional sys- s— _ggngpg) " Consider two successive crossings with the
tems, there is presently no rigorous theory of dynamics Ofesonant surface. Let these crossings occur at values of the
adiabatic invariants at separatrix crossings. We are going tgssonance phasg, =y, and y, = v, correspondingly.
investigate separatrix crossings in the TBC problem in a Now a small variatiorsy, of y, produces the variation of
separate paper. . . the jump value ofK: SAK~\edy;. As a result, the time
We would like to mention that systems W'th. PasSag€syarind between two crossings changesdby SAK/e, pro-
fchrough resonances were investigated alsp in a different w ucing a variationdy,~ SAK/e. Hence, we geBy,> oy,
in Refs.[29,30) (see also references thergin and values ofy; and y, can be considered as independent.
The jump value oK is the function ofy, and is also the
IV. LONG-TIME DYNAMICS probabilistic valuesee Ref[16] for details. Jumps ofK at
In accordance with Ref16], the actiond, , are almost resonance crossings can be considered as random walks with

adiabatic invariants over the time inten(@O(1/e)) (which  Steps of order/e. Accumulation of such jumps produces a
is of order of a typical period of nuclei oscillationson  diffusion [see Fig. Tc)]. _ _

longer time intervals adiabatic invariance is destroyed for the FOr some initial points the above-mentioned estimates are
majority of initial conditions due to captures into resonancedot valid (the measure of such initial points is small for
and scattering on resonances. Consider this topic using trRyStems with a single resonands).

estimates given in Ref.16], which explain destruction of Ve have found an interesting example of regular dynam-
adiabatic invariance in a large part of the phase space dfs of actionsl, in our system(see Fig. 7. Consequent
systems with passage through a single resonance. ConsidelUfps ofl , are correlated in such a way thatevolve along
stable periodic adiabatic trajectory of our system that Periodic in time curves. This regime is effectively stable: it
crosses a low-order resonant surface. Let us neglect influend@sts for thousands of nuclei oscillations at least. However,
of all other resonant surfaces. A phase point that moves nedf€n a value ot is lessen, dynamics of the phase pdinith

P crosses the resonant surface repeatedly. Let us also s@i’E same initial conditionsbecomes irregular, like in Fig.
pose that the probability of capture into the resonance ig(C)-

equal to 0 at the points of intersection®fwith the resonant We are going to investigate long-time dynamics of the
surface. adiabatic invariants in the system more thoroughly in future
An asymptotic formula for the jump of the adiabatic in- stqdies. Note that an accurate dgscription of_ statistical prop-
variantK has the following forn{16]: erties of jumps of adiabatic invariants in multiresonance sys-
tems is still the unsolved question.
AK= Zﬁsf ’ (ot9y)dy +0(e), ACKNOWLEDGMENTS
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