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Resonant phenomena in classical dynamics of three-body Coulomb systems

A. P. Itin*
Space Research Institute, Russian Academy of Sciences, Profsoyuznaya Street 84/32, 117997 Moscow, Russia

~Received 25 June 2002; published 5 February 2003!

We consider dynamics of a planar three-body Coulomb system similar to a hydrogen molecular ion~heavy-
light-heavy particles!. The system has three degrees of freedom. In the limit of infinitely heavy nuclei the
system is reduced to the famous two-center problem which is integrable. When masses of heavy particles are
finite, one degree of freedom in the Hamiltonian system corresponds to slow nuclei motion, while other two
degrees of freedom correspond to fast electron motion. The averaging method predicts that actions of ‘‘fast’’
motions of the system with frozen nuclei are approximate integrals of the full system~adiabatic invariants!.
However, during slow evolution of the ‘‘heavy’’ subsystem certain resonance conditions can be satisfied. We
study the phenomena of capture into resonances and scattering on resonances which can lead to destruction of
adiabatic invariance in the system.

DOI: 10.1103/PhysRevE.67.026601 PACS number~s!: 31.15.Md, 45.50.Jf, 05.45.Pq, 05.45.Ac
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I. INTRODUCTION

A famous dynamical problem known as the ‘‘problem
three bodies’’@1# has been investigated for more than 2
years @2# because of its importance in celestial mechan
@3#, as well as in one-electron molecular ions@4–7#, doubly
excited states in atoms@8#, and exotic molecular systems@9#.
A huge number of papers dealing with nonintegrable cla
cal motion of three gravitating bodies has been publish
On the other hand, only in a limited number of papers has
classical three-body Coulomb~TBC! problem been investi-
gated analytically~see Refs.@7–15# and references therein!.
A systematic investigation of the classical dynamics of TB
problem is desirable because, beside being of fundame
interest, it may provide useful information for modern sem
classical methods dealing with quantum mechanics of ato
and molecular systems@3#. In both gravitational three-body
systems and TBC systems the masses of the particles
volved usually differ by orders of magnitude. The main d
ference between TBC problems and gravitational three-b
problems is that in the latter interparticle interactions dep
on the particle masses, whereas in the former they depen
charges~which usually are of the same order of magnitud!.
As a result, perturbative treatment of a TBC system such
a hydrogen molecular ion is quite different from that
gravitational systems in celestial mechanics. In the pres
paper, we consider dynamics of a planar TBC system sim
to hydrogen molecular ion@two heavy ~massM ) and one
light ~massm) charged particles#. We consider the problem
for different mass ratios~not restricting ourself to the hydro
gen molecular ion!. In the limiting case of fixed nuclei~i.e.,
M /m5`) the system becomes separable~in classical me-
chanics, separation of Hamilton-Jacobi equation for the tw
fixed center three-body problem has been known alread
Euler and Jacobi!. Then the mass ratio is finite, the proble
is nonintegrable, but the presence of slow and fast motion
the system enables one to use averaging methods. How
the averaging technique in the system is not straightforw
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because of resonant phenomena, which complicate the an
sis. We use a scheme of analysis of resonant phenomen
Hamiltonian systems possessing slow and fast variables@16#;
this scheme is a Hamiltonian version of a more gene
scheme@17,18# ~see also Refs.@19–21#!.

II. HAMILTONIAN EQUATIONS OF MOTION

Consider three particles with massesmi and chargesZi
moving in a plane (x,y). The Hamiltonian of the system is

H5(
i 51

3 S pxi

2 1pyi

2

2mi
D 1

Z1Z2

r 12
1

Z2Z3

r 23
1

Z1Z3

r 13
, ~1!

wherer i j are interparticle distances

r i j 5@~xi2xj !
21~yi2yj !

2#1/2. ~2!

We assumem1,25M , m35m, M@m, Z1,251, Z3521.
Before applying canonical perturbation theory to the syst
~1!, let us perform some transformations. By means
simple canonical transformation with generating fun
tion W15 p̃x1

(x12x3)1 p̃y1
(y12y3)1 p̃x2

(x22x3)1 p̃y2
(y2

2y3)1 p̃x3
x31 p̃y3

y3 the Hamiltonian is reduced from six t
four degrees of freedom@15#:

H5

p̃x
1

2 1 p̃y
1

2 1 p̃x
2

2 1 p̃y
2

2

2m
1

p̃x
1
p̃x

2
1 p̃y

1
p̃y

2

m
2

1

Ax̃1
21 ỹ1

2

2
1

Ax̃2
21 ỹ2

2
1

1

A~ x̃12 x̃2!21~ ỹ12 ỹ2!2
, ~3!

wherem is the reduced mass,m5mM/(m1M ). Then, we
change to variables (Px ,x,Py ,y,PR ,R,PQ ,Q) by means of
a generating function
©2003 The American Physical Society01-1
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W25 p̃x2
~ 1

2 R cosQ1x cosQ2y sinQ!

1 p̃y2
~ 1

2 R sinQ1x sinQ1y cosQ!

2 p̃x1
~ 1

2 R cosQ2x cosQ1y sinQ!

2 p̃y1
~ 1

2 R sinQ2x sinQ2y cosQ!.

New coordinates are determined by the following relation

x̃252
1

2
R cosQ2x cosQ1y sinQ,

ỹ252
1

2
R sinQ2x sinQ2y cosQ,

x̃15
1

2
R cosQ2x cosQ1y sinQ,

ỹ15
1

2
R sinQ2x sinQ2y cosQ. ~4!

The resulting HamiltonianH(Px ,x,Py ,y,PR ,R,PQ) does
not depend onQ, therefore,PQ5const and we get the sys
tem with three degrees of freedom. It is easy to calculate
PQ is equal to the total angular momentumL : PQ5L. Let
us introduce a small parametere5Am/M and new momenta
PR85ePR ~we are interested in motions where typical valu
of PR are high, so thatPR8@e). Denote alsoPQ8 5ePQ . Sub-
stituting PR8 in the Hamiltonian, we get the Hamilto
nian H(Px ,x,Py ,y,PR8 ,R,PQ8 ) with canonically conjugated
variables (e21PR8 ,R), (Px ,x), (Py ,y) which containsPQ8
as a parameter. The next step is to introdu
variables (Pu ,u,Pv ,v,P̃R ,R̃) by means of a generatin
function W3(Px ,Py ,PR ,u,v,R̃)5(R̃/2)(Px coshv cosu

2Py sinusinhv)2e21R̃PR1Et, whereE is the value of the
Hamiltonian~3! ~see also Refs.@7,22#!. New coordinates are
determined by the following relations:

x52
R

2
coshv cosu, y5

R

2
sinhv sinu, R̃5R. ~5!

The resulting Hamiltonian is~omitting tildes and primes!

H5
1

m S PR
21

PQ
2

R2 D 1
1

R
1

2

mR2

Pv
21Pu

2

cosh2v2cos2u
~6!

2
4 coshv

R~cosh2v2cos2u!
2E

1
ePQ

mR2

Pu sinh 2v1Pv sin 2u

cosh2v2cos2u

1
ePR

mR

Pu sin 2u2Pv sinh 2v

cosh2v2cos2u
02660
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1
e2

mR2
~Pv

21Pu
2!

cosh2v1cos2u

cosh2v2cos2u
50.

In order to regularize the Hamiltonian let us introduce a n
time variablet8 satisfyingdt/dt85(cosh2v2cos2u)m/2 @22#.
The resulting Hamiltonian is~omitting tildes!

H5
1

4 S PR
21

PQ
2

R2
1

m

R
2mED ~cosh 2v2cos 2u!1

Pv
21Pu

2

R2

2
2m

R
coshv1e

PR

2R
~Pu sin 2u2Pv sinh 2v !

1e
PQ

2R2
~Pu sinh 2v1Pv sin 2u!1

e2

4R2
~Pv

21Pu
2!

3~21cosh 2v1cos 2u!5F01eF11O~e2![0. ~7!

Variablese21PR andR ~whereR is still the internuclei dis-
tance! are canonically conjugated

ṖR5e
]H
]R

, Ṙ5e
]H
]PR

, ~8!

so that this pair of variables is ‘‘slow,’’ whereas other tw
pairs are ‘‘fast.’’ If one frozeR,PR and neglect termsO(e) in
Eq. ~7!, one will get the problem of two fixed Coulom
centers~two-center problem! which is integrable. Therefore
the Hamiltonian system~7! can be investigated using th
technique developed in Refs.@16,18# and employed recently
in Refs.@23–26#. So, consider first the HamiltonianF0 of the
system~7! with frozenPR ,R and with termsO(e) omitted

F05
Pv

2

R2
1

Pu
2

R2
2~cosh 2v2cos 2u!Eel2

2m

R
coshv, ~9!

whereEel5(m/4)(E2PR
2/m2PQ

2 /mR221/R). Hamiltonian
F0 in addition to conserved energy has a second constan
motion V:

Pu
21Eelcos 2u5V,

Pv
22Eelcosh 2v22mRcoshv52V, ~10!

whereEel5R2Eel . The system is separated into two deco
pled oscillators whose phase portraits are shown in Fig
Since the HamiltonianF0 is integrable, one can defin
action-angle variablesI u ,fu ,I v ,fv in the domain of its
phase space filled up by two-dimensional invariant tori.

We define the action variables in the following~‘‘natu-
ral’’ ! way. For a phase point in Fig. 1~a! moving in the os-
cillation domain of the phase portrait~‘‘inside’’ the separa-
trix! I u is the area encircled by its trajectory~i.e., the line of
constantEel and V), divided by 2p. For a phase point in
Fig. 1~a! moving in the domain of rotation,I u is the area
between the two lines of constantEel , V ~one of which
passes through the point! and linesu50, u52p, divided by
4p ~so that we avoid a geometric jump in the action by
1-2
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factor of 2 at the separatrix!. In the same way the actionI v is
introduced. For a phase point in Fig. 1~b! moving in one of
the potential wells~inside the separatrix!, I v is the area en-
circled by its trajectory, divided by 2p. For a phase point in
Fig. 1~b! moving around both of the two stable equilibr
~‘‘outside’’ the separatrix!, I v is the area encircled by its tra
jectory, divided by 4p. For simplicity actions of the system
can be written in the following form:

I u5
1

2p R AV2Eelcos 2udu,

I v5
1

2p R A2V1Eelcosh 2v12mRcoshvdv, ~11!

where the symbol ‘‘r ’’ takes into account the geometric fac
tor 2 in the different domains of the phase space as descr
above. The transformation (Pu ,u,Pv ,v)→(I u ,fu ,I v ,fv) is
canonical and can be performed using a generating func
S(u,v,I u ,I v ,R,PR ,E) that containsR,PR ,E as parameters
In the new variables the HamiltonianF0 transforms toH0
5H0(I u ,I v ,PR ,R,E). The functionS has the form

FIG. 1. Phase portraits of the subsystems~10!. ~a! (Pu ,u) plane
~b! (Pv ,v) plane.
02660
ed

n

S5E
v0

v
A2V1Eelcosh 2x12mRcoshxdx

1E
u0

u
AV2Eelcos 2ydy, ~12!

where in the first part of right-hand side of Eq.~12! V is
considered as a function ofI v , whereas in the second part
is considered as a function ofI u @see Eq.~11!#. Initial coor-
dinatesu0 andv0 are functions ofI u andI v correspondingly;
one can definev0 as the root of the integrand ofI v , andu0
as eitherp/2 or 3p/2 depending on the domain of motion i
Fig. 1~a!. Frequencies of the system have the form

vv5
]H0

]I v
52

1

]I v

]V

54pH R 1

A2V1Eelcosh 2v12mRcoshv
dvJ 21

,

vu5
]H0

]I u
5

1

]I u

]V

54pH R 1

AV2Eelcos 2u
duJ 21

.

Now, following Ref. @16#, let us make in the system with
Hamiltonian~7! the canonical transformation of the variabl

~Pu ,u,Pv ,v,PR ,R!→~ Ī u ,f̄u , Ī v ,f̄v ,P̄R ,R̄! ~13!

determined by the generating function

1

e
P̄RR1S~u,v, Ī u , Ī v ,R,P̄R ,E!, ~14!

which containsE as a parameter. The canonically conjugat
pairs of new variables are (Ī u ,f̄u), ( Ī v ,f̄v), (e21P̄R ,R̄).
Formulas for the transformation of the variables have
form

fa5
]S

] Ī a

, Pa5
]S

]a
, a5u,v,

R̄5R1e
]S

] P̄R

, PR5 P̄R1e
]S

]R
. ~15!

Hamiltonian~7! in the new variables has the form@16#

H5H0~ Ī u , Ī v ,P̄R ,R̄,E!1eH1~ Ī u ,f̄u , Ī v ,f̄v ,P̄R ,R̄,E!

1O~e2!,

H15F11
]F0

]PR

]S

]R
2

]H0

]R

]S

] P̄R

. ~16!
1-3
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The variables (Ī u ,f̄u , Ī v ,f̄v ,P̄R ,R̄) areO(e)- close to the
variables (I u ,fu ,I v ,fv ,PR ,R). Henceforth, the bars ove
the new variables are omitted and the new Hamiltonian

H5H0~ I u ,I v ,PR ,R,E!1eH1~ I u ,fu ,I v ,fv ,PR ,R,E!

1O~e2!. ~17!

The differential equations of the motion have the form

İ a52e
]H1

]fa
1O~e2!,

ḟa5va~ I u ,I v ,PR ,R,E!1e
]H1

]I a
1O~e2!, a5u,v,

ṖR52e
]H0

]R
2e2

]H1

]R
1O~e3!,

Ṙ5e
]H0

]PR
1e2

]H1

]PR
1O~e3!. ~18!

Averaging of the right-hand sides of Eq.~18! over fa and
discarding termsO(e2) gives an averaged system

İ a50, ṖR52e
]H0

]R
, Ṙ5e

]H0

]PR
. ~19!
e
n

pt
s

om

02660
Approximation ~19! is called an adiabatic approximatio
@16,18#. Trajectories of the system~19! are called adiabatic
trajectories. In the adiabatic approximationI u,v5 const. The
adiabatic approximation breaks down in a vicinity of res
nant surfaces which are defined by a resonance cond
kuvu1kvvv50 (ku ,kv are integers! and near separatrice
where eithervu or vv equals to zero. In the full~nonaver-
aged! system variablesI a are approximate adiabatic invar
ants, i.e., they are well conserved in a large area of ph
space~far from resonant surfaces and separatrices!. Although
resonant surfaces are dense in the phase space of our t
dimensional Hamiltonian system, for smalle only finite
number of low-order resonances are important~the order of
an resonance is the value ofk5ukuu1ukvu) @16#. If an adia-
batic trajectory crosses an resonant surface in the aver
system, it cross the surface at the same point periodicall
time ~because the averaged system is a one-dimensi
Hamiltonian system forPR ,R and therefore is integrable!.
Note that in Eq.~7! PQ5eL, so the terms containingPQ are
important only in case of very highL ~fast rotation!. If L
;1, the perturbationF1 is separated in (u,v): the Hamil-
tonian~7! with frozenPR ,R and with termsO(e2) omitted is
integrable. That enables one to introduce ‘‘improved’’ ad
batic invariantsI u

(1) ,I v
(1) as the actions of the Hamiltonia

F01e(PR/2R)(Pu sin 2u2Pv sinh 2v) @see Eq.~7!#. Formu-
las for them have the form
I u
(1)5

1

pEumin

umaxAV (1)2Eelcos 2u1
e2

16
PR

2R2sin22udu,

I v
(1)5

1

pEvmin

vmaxA2V (1)1Eelcosh 2v12mRcoshv1
e2

16
PR

2R2sinh22vdv, ~20!
-
y-

in

n

ion
o-
r-
is
r-
where

Pu
21Eelcos 2u1

e

2
PRRPu sin 2u5V (1),

Pv
22Eelcosh 2v22mRcoshv2

e

2
PRRPvsinh 2v52V (1).

~21!

The variablesI a @Eq. ~11!#, I a
(1) , and Ī a(a5u,v) areO(e)-

close to each other. Variations ofI a
(1) far from low-order

resonant surfaces are of order ofe, nevertheless, they ar
sufficiently smaller than those ofI a because the perturbatio
is partly included into the unperturbed Hamiltonian.

The phenomena of scattering on a resonance and ca
into a resonance being described below lead to change
Ī a , which scale asO(Ae) and O(1) correspondingly. So
that for numerical investigations of these resonant phen
ure
in

-

ena either of variablesI a ,I a
(1) , Ī a could be used, but the vari

ablesI a
(1) are more convenient and in the figures below d

namics of I a
(1) is demonstrated@with indexes ~1! being

omitted#. At the same time, in the analytical expressions

the text below the variablesĪ a are investigated, and bars i
the formulas are omitted.

III. DYNAMICS IN A VICINITY OF RESONANCES

Consider dynamics of the system in a resonance reg
following Ref. @16#. Near a resonant surface of a given res
nance the system~18! can be transformed into standard ‘‘pe
turbed pendulumlike system’’ form. This transformation
carried out in aO(Ae)- neighborhood of the resonant su
face. For a given pair of resonance indexes (ku ,kv) there
exist integersl u ,l v such thatkul v2kvl u51. Let us make a
1-4
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canonical transformation of the variables (I u ,I v ,fu ,fv)
→(K,J,g,c) using formulas

g5kufu1kvfv , K5 l vI u2 l uI v ,

c5 l ufu1 l vfv , J52kvI u1kuI v . ~22!

VariablesPR ,R remain unchanged under this transformatio
The transformation~22! produces slow (g) and fast (c)
phases from initial phasesfu ,fv in the vicinity of (ku ,kv)-
resonance. Such transformations are often used in sys
with slow and fast variables@18#. The new Hamiltonian has
the form

H5H0~K,J,PR ,R!1eH1~K,J,g,c,PR ,R!1O~e2!.
~23!

~We keep old notations for the Hamiltonian in the new va
ables.! The new phaseg5kufu1kvfv is called a resonan
phase. In a resonant zone the resonant phaseg changes
slowly andc changes rapidly;ġ;Ae,ċ;1. So that we can
perform the averaging of the Hamiltonian overc @16,18#. To
this end, we should perform in the resonant zone a canon
transformation of variables

~K,J,g,c,PR ,R!→~K̄,J̄,ḡ,c̄,P̄R ,R̄!, ~24!

which is close to identity in (K,J,g,c) by O(e) and close to
identity in (PR ,R) by O(e2) @16#. In the new variables the
Hamiltonian has the form~bars over new variables are omi
ted!

H5H0~K,J,PR ,R!1eH̄1~K,J,g,PR ,R!1O~e2!.
~25!

Here,H̄1 is the average ofH1ue50 over c ~or, equivalently,
the sum of the resonant harmonics in the Fourier series
pansion forH1ue50 @16#!. The differential equation forJ has
now the form

J̇5O~e2!. ~26!

Therefore,J is well conserved in the resonant zone@its varia-
tion during a timeO(1/e) in a resonant zone isO(e)]. The
resonant surface is defined now by the equation]H0 /]K
50. Let us assume that condition]2H0 /]K2Þ0 is fulfilled
on this surface. Then, locally the equation of the reson
surface can be represented in the formK5a(PR ,R,J). An
expansion ofH near the resonant surface yields@16#

H5L~PR ,R,J!1
1

2
g~PR ,R,J!@K2a~PR ,R,J!#2

1e f ~g,PR ,R,J!1Og~ uK2au31euK2au!1O~e2!.

~27!

Here, L, f ,g are restrictions ofH0 ,H̄1 ,]2H0 /]K2 to the
resonant surface. Indexg in Og(•) indicates functions tha
do not depend onc. Performing a simple transformatio
02660
.

ms

-

al

x-

nt

described in Ref.@16#, we obtain that dynamics in the reso
nant region is determined by the Hamiltonian

F5e21L~PR ,R,J!1F01~P,g,PR ,R,J!1O~e!,

F015F01Og~Ae!,

F05
1

2
g~PR ,R,J!P21 f ~g,PR ,R,J!1b~PR ,R,J!g,

~28!

whereb5$a,L% ($•% means Poisson brackets!, canonically
conjugated variables are (P,g), (e23/2PR ,R), and
(J,e21/2c) ~a new timeu5Aet8 was introduced!. Approxi-
mate equations of motions have the following form@16#:

PR852Ae
]L

]R
, R85

]L

]PR
,

P852
]F0

]g
, g85

]F0

]P
,

J5const, ~29!

FIG. 2. Typical phase portraits of the HamiltonianF0 from Eq.
~28!. From left to right:~a! The phase portraits have an oscillato
domain@the inequality ming(]f/]g),2b,maxg(]f/]g) is satisfied#.
~b! There is no such a domain on the phase portrait.
1-5
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A. P. ITIN PHYSICAL REVIEW E 67, 026601 ~2003!
where primes denote differentiating over new timeu. Hence,
evolution of slow variablesPR ,R is governed by a Hamil-
tonian system; the HamiltonianAeL(PR ,R,J) of this sys-
tem depends on the parameterJ. This system determines th
flow on the resonant surface, which is called ‘‘a reson
flow’’ @16#. Behavior ofP,g is governed by the Hamiltonian
F0(P,g,PR ,R,J). This Hamiltonian depends on the param
eter J5const and on the slowly varying parametersPR ,R.
Consider subsystem forP,g in Eq. ~29! with frozen PR ,R.
We get a Hamiltonian system with one degree of freed
which is called a pendulumlike system because the Ha
tonianF0 resembles a Hamiltonian of a pendulum under
action of a constant torque@16#~for a pendulumF05 1

2 gP2

2cosg1bg). There are two basic types of the phase portra
of the HamiltonianF0: with oscillation regions and withou
such regions. If in Eq.~28! ming(]f/]g),2b,maxg(]f/]g),
then there are stable and unstable stationary points on
phase portrait. The separatrices of the unstable statio
points enclose the oscillation regions. If this inequality is n
satisfied, there are no oscillation regions. Typical phase
traits are presented in Fig. 2.

Motion in oscillation regions correspond to captured in
a resonance motion of phase points. Motion outside s
regions ~motion in the rotation region! correspond to the
phase points that cross the resonant zone without being
tured. Now let us take into account slow change of the
rametersPR ,R along the resonant flow in system~29!. Let
the area of an oscillation region grow along the reson
flow. Then additional space appears inside the oscillation
gion. Due to conservation of phase volume in Hamilton
systems, this space will not be occupied by the phase po
that were captured into resonance earlier. Therefore, s

FIG. 3. Capture of a phase point into a~2,1! resonance and
escape from the resonance. The captured point moves along a
nant curve in the phase space until it escapes from the reson
Parameters of the system:m51, M524000, PQ8 50.4,
E522.62. From top to bottom:~a! Dynamics of the adiabatic in
variant I u . ~b! Dynamics of the frequencies ratioG5vu /vv .
02660
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phase points of Eq.~29! cross a separatrix of the phase po
trait of F0, and change the regime of motion from a rotati
to an oscillation. This means capture into resonance. If a
of an oscillation region decreases along the resonant fl
then phase points leave this oscillation region and leave
resonant zone. This is escape from the resonance. We fo
these phenomena in numerical investigations of the sys
~7!. The results are demonstrated in Fig. 3, where cap
into a ~2,1! resonance and escape from the resonance
shown. The same phenomenon was investigated recent
Refs. @23,25,26#. For a three-body Coulomb system simil
to a hydrogen molecular ion, the phenomenon of capture
a resonance is numerically demonstrated and analytically
plained. While moving in oscillating region the capture
phase point has two adiabatic invariants@16# : J and ‘‘ac-
tion’’ variable r for the pendulumlike system in the oscilla

so-
ce.

FIG. 4. Dynamics of the adiabatic invariantJ. Parameters and
initial conditions are the same as in Fig. 3.

FIG. 5. A single jump of the adiabatic invariantI u on a ~1,1!
resonance. Parameters of the system:m51, M524000, PQ8
50.001, E522.786. From top to bottom:~a! Dynamics of the
adiabatic invariantI u . ~b! Dynamics of the frequencies ratioG
5vu /vv . ~c! Dynamics of the adiabatic invariantJ.
1-6
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ing region@i.e., the area on (P,g) plane encircled by a line
of constantF0 passing through the phase point, divided
2p].

The goodness of conservation of the adiabatic invariaJ
is demonstrated in Fig. 4. The goodness of conservatio
the ‘‘internal’’ adiabatic invariantr in a similar problem was
demonstrated numerically in Ref.@23#.

Phase points that cross the resonance without being
tured undergo a jump of adiabatic invariantK of order Ae
@16# and, therefore, jumps ofI u,v ~since I u5kuK1 l uJ, I v
5kvK1 l vJ, and the magnitude ofJ is well conserved during
passage through the resonance!. This phenomenon is called
scattering on a resonance. We present corresponding resu
of numerical investigations of the system~7! in Fig. 5, where
a single jump of the adiabatic invariantI u on a ~1,1! reso-
nance is shown, and Fig. 6, where several jumps are sho
Although there are passages through other resonances in
6, including~3,5! resonance, they are not visible in the figu
~there are no distinguishable jumps of the adiabatic inv
ants on the other resonances!. The reason for this is fas
decay of the resonant harmonics ofH̄1 in Eq. ~25! with in-
creasing the order of a resonance~see Ref.@16#!. In the adia-
batic approximation a value of the unperturbed frequenc
ratio G5vu /vv evolves periodically in time. In Fig. 6~b!
small deviations from periodicity can be seen.

Both capture into a resonance and scattering on a r
nance are probabilistic phenomena, and they are usua
systems with resonance crossings~see Refs.@16,18,25,26#!.
For a phase point approaching the resonance the proba
to be captured is a value of order ofAe. So, a phase point in
(I u ,I v ,PR ,R) space moves in a following way: while it i
far from low-order resonant surfaceskuvu(I u ,PR ,R)
1kvvv(I v ,PR ,R)50 and separatrices, it moves in a vici
ity of an adiabatic curveI u,v5const. When it nears a reso

FIG. 6. Jumps of the adiabatic invariantI u . Parameters of the
system:m51, M524000, PQ8 50.001, E522.786. From top to
bottom: ~a! Dynamics of the adiabatic invariantI u . ~b! Dynamics
of the frequencies ratioG5vu /vv .
02660
of

p-

n.
ig.

i-

s

o-
in

lity

nant surface~enters a resonant zone!, it leaves the adiabatic
curve and can be either captured into the resonance or
through the resonance region without capture. In the cas
capture the phase point continues to move in the vicinity o
resonant surface until it becomes ejected from the resona
For the captured phase point, variablesR,PR evolve along a
resonant flow trajectory$R̄(et),P̄R(et)% so the areaS of the
oscillating region slowly evolves asS„R̄(et),P̄R(et)…. In the
first-order approximationr5const along the trajectory of th
phase point in the oscillation region. At the time of captu
into the oscillating region 2pr5S(R,PR). The phase point
will be ejected from the oscillating region whe
S„R(et),PR(et)… is equal to 2pr again, so the times of cap
ture and escape from the resonance are two nearby roo
the equationS„R̄(et),P̄R(et)…52pr @16#. Along the cap-
tured phase trajectories, adiabatic invariantsI a may change
by values of order 1.

In the case of passing through the resonant region with
capture the adiabatic invariantsI u ,I v of the phase point un-
dergo jumps;Ae, and after passage through the reson
zone the particle continues to move along other adiab
curve.

Performing numerical investigations of the system~7!, we
have observed phenomena of scattering on resonance
systems with particle mass ratiom/M ranging from 1023 to
1027, both in systems withL50 andLÞ0. So far we have
observed the phenomena of capture into a resonance on
systems withLÞ0.

In the present paper, we investigate passages of p

FIG. 7. Regular and diffusionlike behavior of approximate ad
batic invariants. From top to bottom:~a! Regular dynamics of the
adiabatic invariant I u . Parameters of the system,m51, M
52000, PQ8 50.05, E522.84. Initial values of adiabatic invari
ants; I u58.3431021, I v56.3631022. ~b! Dynamics of the fre-
quencies ratioG5vu /vv @parameters and initial conditions are th
same as in~a!#. ~c! Diffusionlike dynamics of the adiabatic invarian
I u . Parameters of the system;m51, M524000, PQ8 50.001, E
522.786. Initial values of adiabatic invariants;I u57.1731021,
I v51.4431021. ~d! Dynamics of the frequencies ratioG5vu /vv
@parameters and initial conditions are the same as in~c!#.
1-7



a
n

ia
so

o
g

e
w

th
e
t

f
e
de

en
ne
s

n-

in

he
f the

f

nt.

with
a

are
r

m-

it
er,

.

he
re
op-
ys-

for
by

A. P. ITIN PHYSICAL REVIEW E 67, 026601 ~2003!
points of our system through resonances, but not sep
trices. Separatrix crossings may also lead to breakdow
adiabatic invariance@27#. It is known that in systems with
two degrees of freedom behavior of the breakdown of ad
baticity near separatrices is different from that near re
nances~see Refs.@19,20,27,28#!. For multidimensional sys-
tems, there is presently no rigorous theory of dynamics
adiabatic invariants at separatrix crossings. We are goin
investigate separatrix crossings in the TBC problem in
separate paper.

We would like to mention that systems with passag
through resonances were investigated also in a different
in Refs.@29,30# ~see also references therein!.

IV. LONG-TIME DYNAMICS

In accordance with Ref.@16#, the actionsI u,v are almost
adiabatic invariants over the time interval„0,O(1/e)… ~which
is of order of a typical period of nuclei oscillations!. On
longer time intervals adiabatic invariance is destroyed for
majority of initial conditions due to captures into resonanc
and scattering on resonances. Consider this topic using
estimates given in Ref.@16#, which explain destruction o
adiabatic invariance in a large part of the phase spac
systems with passage through a single resonance. Consi
stable periodic adiabatic trajectoryP of our system that
crosses a low-order resonant surface. Let us neglect influ
of all other resonant surfaces. A phase point that moves
P crosses the resonant surface repeatedly. Let us also
pose that the probability of capture into the resonance
equal to 0 at the points of intersection ofP with the resonant
surface.

An asymptotic formula for the jump of the adiabatic i
variantK has the following form@16#:

DK52AesE
6`

g* ~] f /]g!dg

A2g@h* 2 f ~g,PR
*
,R* ,J!2bg#

1O~e!,

~30!

wherePR ,R are the values of slow variables at the po

* *

r-
-

cs

v

A
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of intersection of the adiabatic trajectoryP with the resonant
surface;g* denote the value ofg at the point of intersection
of the exact trajectory with the resonant surface;h* is the
value of the HamiltonianF0 at the resonant surface@i.e.,
h* 5 f (g* ,PR

*
,R* ,J)1bg* ]; the sign in6` is given by

s52sgn(bg). Consider two successive crossings with t
resonant surface. Let these crossings occur at values o
resonance phaseg* 5g1 andg* 5g2 correspondingly.

Now a small variationdg1 of g1 produces the variation o
the jump value ofK: dDK;Aedg1. As a result, the time
period between two crossings changes bydt;dDK/e, pro-
ducing a variationdg2;dDK/e. Hence, we getdg2@dg1
and values ofg1 andg2 can be considered as independe
The jump value ofK is the function ofg* and is also the
probabilistic value~see Ref.@16# for details!. Jumps ofK at
resonance crossings can be considered as random walks
steps of orderAe. Accumulation of such jumps produces
diffusion @see Fig. 7~c!#.

For some initial points the above-mentioned estimates
not valid ~the measure of such initial points is small fo
systems with a single resonance@16#!.

We have found an interesting example of regular dyna
ics of actionsI a in our system~see Fig. 7!. Consequent
jumps ofI a are correlated in such a way thatI a evolve along
periodic in time curves. This regime is effectively stable:
lasts for thousands of nuclei oscillations at least. Howev
then a value ofe is lessen, dynamics of the phase point~with
the same initial conditions! becomes irregular, like in Fig
7~c!.

We are going to investigate long-time dynamics of t
adiabatic invariants in the system more thoroughly in futu
studies. Note that an accurate description of statistical pr
erties of jumps of adiabatic invariants in multiresonance s
tems is still the unsolved question.
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